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A class of fragmentation models is introduced in which the particles have more than one degree of
freedom. The class of models is discussed in general terms, and analytical results are presented for a par-
ticular case of particles with two degrees of freedom. The models are compared analytically and numeri-
cally with previously solved one-dimensional models. In addition, we present exact solutions to the
“standard” fragmentation equation when the fragmentation rate F(x,y)=xy(x +y)® for both a=+1
and —1. The scaling form of these models is discussed.

PACS number(s): 05.20. —y, 02.50.—r

I. INTRODUCTION

Fragmentation is a common phenomenon that occurs
in a diverse set of physical systems. These include poly-
mer degradation [1-3], rock crushing and grinding (com-
minution) [4], droplet breakup [5], and fiber length reduc-
tion [6]. This wide variety of applications has stimulated
many theoretical attempts to find the evolution in time of
the particle size distribution as a function of the
initial conditions and the fragmentation rates. These
studies have led to solutions of particular problems using
either a combinatorial or statistical approach, or by
solving the kinetic equation directly. More recently this
phenomenon has been addressed using scaling theory,
and a dynamical phase transition (the “shattering transi-
tion”) has been observed.

A number of authors have obtained exact solutions to
the fragmentation equation; Ziff and McGrady [3,7-9]
found solutions for the binary breaking model with a
number of different fragmentation rules, and a general
scaling theory was constructed which incorporated these
models. In [10], a number of simplified models of degra-
dation were solved, including a model in which each
bond breaks in the center with one of two unequal frag-
mentation rates. The fragmentation rate of a particular
bond was determined by its length. The dependence of
the fragmentation rate on the length of the chain was
considered in [1,2] and applied to the acid hydrolysis of
dextran [1]. In particular, the cases of random scission,
of a Gaussian probability of scission, and of scission at
the center of the chain were considered [2]. A model in
which each bond had a different probability of breaking
was examined in [11]. This was motivated by a desire to
understand the kinetics of cross linked structures, as was
the work in [12]. Other workers [13] have generalized
the standard mean field coagulation equation to include
the effects of fragmentation and have obtained values for
the critical exponents of the resulting steady state size
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distribution. These were compared with the exponents
obtained from numerical simulations of this system in di-
mensions 1, 2, and 3; the upper critical dimension was
found to be less than 1.

The general form of the multiple fragmentation equa-
tion is given (see, for instance, [9]) by

dc(x,t) _
ot

where a (x) gives the rate of fragmentation of particles of
size x, b(x|y) is the average number of particles of size x
produced when a particle of size y breaks up, and c(x,?)
is the concentration of particles of size x at time ¢t. To
conserve the total mass of the particles we have that

J xbixlydx=y 2)

—a(x)e(x,0+ [ “apb(xlyley,ndy , (D

and the average number of particles produced by the
fragmentation of a particle of size y is given by

(N = [“bixly)dx . 3)

Restrictions are placed on the possible choices of b(x|y)
by Egs. (2) and (3), given that physically we require
(N(y))=2.

Most analytical studies have concentrated on the spe-
cial case of binary fragmentation where two particles are
produced per fragmentation event. In this case Egs.
(1)-(3) can be written, in terms of a single function
F(x,y), as follows:

a(x)= ["F(x —y,p)dy , @)
0
where to ensure there are two fragments per event,
2F(x,y —x)
b = (5)
(x]y) a(y)
and the fragmentation equation becomes
dc(x,t) x
o= ——c(x,t)fo F(y,x —y)dy
+2 [ “F(x,y —x)c(y,0)dy . (©)

F(x,y) gives the rate at which particles of size x +y
break up into particles of size x and y. These equations
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have been solved (see [3,7-9]) for F=1, xy, and (x +y)°.
A scaling theory was constructed (originally for models
of aggregation [14]) by writing the particle size distribu-
tion in the limit x —0 and ¢t — « as

c(x,t)=t“x"P(xt?) , (7)

where ®(£)—1 as £—0 and ®(£)—0 as £— . The ex-
ponents 7, w, and z are related by

w=z(7+2) (8)

due to mass conservation. The dynamical scaling ex-
ponents for some different kernels is given in Table I.
Providing that the scaling function ®(&) is well behaved
as £—0, all initial conditions will yield these forms in the
scaling regime.

For some choices of the fragmentation rate a shatter-
ing transition is observed. In particular, when the rate
increases sufficiently fast with decreasing particle size, a
cascading breakup occurs and a finite amount of mass is
transferred to particles with zero mass [8,15,16]. This is
analogous to the sol-gel transition in coagulating systems
and is accompanied by a violation of dynamical scaling.
The borderline of this phenomenon is signified by an ex-
ponential growth with time of the number of particles [3].
For kernels F(x,y)=(x +y)% the borderline case is
a=—1; for a> —1 dynamical scaling is obeyed; for
a < — 1 a shattering transition is seen.

In this paper we generalize the fragmentation equation
and the associated constraints to particles with more than
one degree of freedom. In real fragmentation processes
the particles have both size and shape. A particle may be
chosen for fragmentation at a rate that is a function of its
area or volume, but the way in which it is fragmented will
be, in general, dependent on its precise dimensions. If
two particles have the same area but one is long and thin
and the other is almost square, they may be equally likely
to fragment because they have the same area, but the

L L
(N(LI,LZ,...,Ld))=f0 'dL; fo “dLyb(L},L},

and the conservation of mass requires that

. LYIL,L,y, ...
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TABLE 1. The dynamical scaling exponents for the kernels 1,
xy, and (x +y)%.

Exponent
F(x,y) 1 xy (x+y)* (a>—1)
1 1 1/(1+a)
0 1 0

long thin particle is much more likely to split down its
long side, whereas the square particle is equally likely to
split down either side. In previous studies all these prop-
erties were represented by a single parameter.

We also consider two problems of binary fragmenta-
tion in which the particles are characterized by a
single parameter. In particular, we consider F(x,y)
=xy(x +y)* for both a+1 and —1. This was motivated
by a desire to see which universality class models of this
type fell into, they could reasonably be assumed to be in
the same class as xy or (x +y)* We obtain, for the first
time, exact solutions for the particle size distributions in
these models and discuss both the dynamic scaling and
the existence of a shattering transition for these systems.

II. PARTICLES WITH TWO OR MORE
FREE PARAMETERS

Equations (1)-(3) can be generalized to the case of
multidimensional particles by introducing a(L,,L,,
...,L4), the rate at which particles, characterized by d
variables L,,L,,...,L; are chosen for fragmentation.
Keeping the same notation as in the Introduction, let
b(L,L,,...,L4|L},L},...,L;) denote the average
number of particles with L,,L,,...,L; produced from a
particle L{,L5,...,L;. As before, the average number
of particles produced is given by

L), 9)

L L
S, Ly - fo “dLyLiLYy -+~ Lyb(LY,L}, ..., Ly|Ly,Lyye.c;Lg)=LLy -+~ Ly . (10)
The fragmentation equation itself becomes
3f(Ly,L,, ...,Lyt)
! 28t & = —a(L\,Ly,...,Ly)f(Ly,Ly, ..., Lygt)
+ledL,l dedL,’,a(L'l,L’z,...,L,;)b(Ll,LZ,...,LdlL'l,L'z,...,L,;)
XfF(LY,LYy, ..., L) . (11)

Equations (9)-(11) form a complete set of equations,
which define the fragmentation process given rates a and
b and an initial condition. The functions @ and b must be
chosen to make the equations physically meaningful and

b must be chosen to satisfy (9) and (10), given, as before,
the physical constraint that (N ) >2.

If we consider breaking particles characterized by two
parameters into two pieces, so that the rate of choosing a
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particle, a(L,,L,),=L,L, and o
b(L{,Ly|L,L,)={L8(L,—LY)

+L25(L2—L12)}/0(L11L2) ’ (12)

then this gives a fragmentation equation of

of(L,,L,,t)
——‘at—z—:—Llef(Ll,Lz,t)

+L2fL°:dL',f(L;,L2,z)
+L1fL°:dL;f(L1,L’2,t) . (13)

This process chooses particles for fragmenting with a
probability proportional to their “area” and creates two
products by splitting them down one of their two sides.
The side to be cut is chosen with a probability propor-
tional to its length; the other side is unaffected. These
particles may be viewed as rectangles, which undergo
splitting down lines parallel to their sides.

We can obtain an equation for the moments M, (1),
defined by

M,,m(t)zfo“’dLlfO”szL;'L;"f<L1,L2,t), (14)

by multiplying by L]L75 and integrating with respect to
L, and L,. This yields

aM,,, (1) 1 4 1
ot (n+1)  (m+1)

—l Mn+lm+l(t) . (15)

Solving this set of equations analytically for the particle
size distribution is difficult; instead we present some nu-
merical simulations of this system in the next section (see
Fig. 1).

We will now proceed to discuss another of the many
possible models in detail to illustrate the difference be-
tween this approach and previous studies where one-
dimensional particles have been considered. We consider
the case of a two-dimensional particle with a=1 and
b(L%{,L%|L,L,)=4/L,L,. It is easy to verify that this
choice of a and b is consistent with (9) and (10) and that it
corresponds to breaking a particle into 4 with a fragmen-
tation rate that is inversely proportional to the product of
the two parameters associated with that particle. From
now on we will refer to this product as the area of the
particle. These fragmentation rules mean that every par-
ticle is equally likely to fragment irrespective of its area
and is the analog of choosing F(x,y)=1/(x +y) for a
particle with one free parameter. The average area is

j

FIG. 1. Area and length probability distributions at the same
moment in time for a system in which a particle is chosen for
fragmentation with a rate proportional to its area, and then
each side is equally likely to be split [see Eq. (13)].

conserved, whereas in the one free parameter system it is
the average length that is the conserved quantity. The
fragmentation equation (11) becomes

3f(L,,L,,t)

at =_f(Ll,L2,t)
wdL| .. dL)
+4 [ — [T—=f(L,Ly0) .
le Ly 7L L’2f P2

(16)

This equation can be solved by rewriting it in terms of the
moments of the probability distribution M, (¢) [defined
in (14)] to reveal
M, (1)

ot

4 —
(n+1)m+1)

1 ‘M,,m(t) , (17
which can be solved to give

4
! (n+1)(m+1)H’ (18)

where the particle at t =0 is of size [, X/,. Notice that
the average area M,,(t) is time independent. It is simple
to rearrange this expression to give

M, (t)=I{ITexp {—t

" = b S (n+Dim 1)
Reversing the order of the summations in the second term of (19), using
s—1
1 1 (=17t ph Il
) " i (20)
(n+1)y (s—1) ot fo l [)’1 yiay,
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and a similar expression for (m + 1)~ involving /, and y, and then comparing the result with the definition of M,,, (¢)

in (14), gives the probability distribution as

r

FOrymt)=e "8y 18y, —1,)+ e L5 4 Ll 1)
1»Y 2 1 1 2 2 112 < 0(r|)2(r+1)| yl y2
The time dependent probability distribution for the area, c( 4,¢), can be obtained via
— © © _ 22
c(A,1) fo dLlfO dL,8(A—L\Ly)f(L,L,,t) (22)
to give
dre - 4y 11 2r+1
_ hd t 142
— t+ 23
clAnN=3A=hl)e 50 2 2+ 1) y @3)

This can be compared with the result for a one-
dimensional particle where F(x,y), the rate at which a
particle of size x +y is split into two particles of size x
and y, is equal to 1/(x +y). The solution [7] for the size
distribution is

2 -t no (2t)r

-2t ][

filx,t)=8(x—1)e "+

(24)

where / is the length of the particle at ¢t =0. This result
differs from that from the two-parameter model; the sum-
mation in the second term has a number of differences. If
one were to expand both expressions for small time the
difference would become apparent at second order, the
order at which the logarithmic divergence appears. In
the two-dimensional problem, as in one dimension, this
forms the borderline case for the shattering transition.
Kernels which diverge less quickly as the size of the par-
ticle gets smaller do not exhibit the transition.

b(L),L4|L,,L,)=2{L6(Ly—L,)8(L,—L

and

b(L{,L%|L,L,)={6L,8L,—LY)

(26)
respectively, into Eq. (11). [In Eq. (25), (L, —L,) is the

Heaviside step function.] Obviously, these three systems

III. NUMERICAL RESULTS

We have performed simulations of a number of
different systems in which the particles are characterized
by two parameters, and there were two products per frag-
mentation event. We present the results of some of these
simulations here, in particular those with a fragmentation
rate of 1 and hence where the probability of choosing a
particular particle for fragmentation is proportional to its
area. Once a particle is chosen for fragmentation, one
side is split and the other side is left unchanged. In Fig. 1
there is a graph of the probability distribution of the area
(product of the two sides) and the length of the two sides
when each side had an equal (0.5) chance of being split.
This is the problem described by Eqgs. (12)—(15). The
probability distributions for the two sides are identical
and the area and side distributions are plotted at the
same time. Initially, the system contained one particle
with /,=I,=1. The side distribution can be obtained
from f(L,,L,,t) by integrating over L, or L,. In Fig. 2
there is the side probability distribution for this system
and that of two other systems; one when the longest side
is always chosen for fragmentation and one when one side
is chosen with probability 0.6. The equations for the
latter two systems can be obtained by substituting
a(L,L,)=L,L, and

2)}/a(L,,L,), (25)

have the same area probability distribution for all time
and, as can be seen from the numerical simulations,
different length probability distributions.

IV. '1—d’ SOLUTIONS

In this section two solutions are presented to the one-
parameter fragmentation model in which two products
are obtained per fragmentation event. These are obtained
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FIG. 2. Length probability distributions at equal times for
systems in which the particle is chosen for fragmentation with a
rate proportional to its area, and a particular side is chosen for
splitting (a) with probability 0.5, (b) if it is the larger side, and
(c) with probability 0.6.

for the case of the kernel F(x,y)=xy(x +y)* for both

a=-+1 and —1. When the kernel takes this form, the
moment equation becomes

oM, (1) 2 1

ot (n+2)n+3) 6

M, qis(t) . 27

The explicit time dependent solution for the particle size
distribution for this general problem would be of interest
for various experimental systems, though the solution for
a=0 has been obtained elsewhere [3,7]. For a= —3 the
zeroth moment grows exponentially with time, which is
the signature of the crossover to the singular, shattering
behavior for a < —3.

For a monodisperse initial condition, the nth moment
is given by

n—1 n+6 n+2 n+3 —t°*?
a+3’ a+3’ a+3’ a+3’ 6 ’

M, (1)=I",F,

(28)

where ,F,(a,b;c,d;x) is the generalized hypergeometric
function.

While the explicit time dependent particle size distri-
bution is difficult to obtain from Eq. (28) for general a,
the solutions for a=+1 and —1 are relatively simple;
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Charlesby’s method [17] can be used for a= +1 to obtain
c(p,0)=8(y —De "5l [le==*5a; . (29)

This solution yields exponents z=+ and 7=1, which do
not coincide with values obtained for any model solved
previously. For F(x,y)=xy /(x +y) we can use the same
method to obtain

cly, )=y —De ~/64 2. [lg—uxtrogy
I~y

(
1w

w3 y212

’

+%t2y3l[fldw
y

o2
f e tz /6dz
w

(30)
which gives a scaling form of
cy, )=ty d(£) (31)
with £=yt!/2 and

_ 5l po _§i —u?
D(§) B fg '1 o ]exp{ 6

This yields exponents z= and 7=1, which do not fall
into any of the universality classes identified previously.
This solution is unusual in that the exact solution and the
scaling form are significantly different from one another.
Consequently, the explicit time dependence of the size
distribution cannot be recovered from the scaling form,
as has been done for some simpler models [9]. These two
results, and that for F(x,y)=xy, suggest that for kernels

F(x,y)=xy(x +y)* the exponents are 7=1 and
z=1/(3+a).

du . (32)

V. CONCLUSIONS

We have introduced a class of fragmentation models in
which the size and shape of the particles are character-
ized by more than one variable. A model where the par-
ticles are characterized by two parameters has been
solved exactly and a number of different models have
been examined numerically. We found that the introduc-
tion of more than one parameter to characterize the size
and shape of a particle can have a significant effect on the
kinetics of the fragmentation process.

A set of fragmentation processes in which the kernel is
given by F(x,y)=xy(x +y)* was introduced and solved
explicitly for a=+1 and —1. For a= —1, the full solu-
tion was significantly different from the scaling solution.
We conjectured that for kernels of this form the dynami-
cal scaling exponents are given by 7=1and z=1/(3+a).
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